If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9X^2-30X-171=0
a = 9; b = -30; c = -171;
Δ = b2-4ac
Δ = -302-4·9·(-171)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-84}{2*9}=\frac{-54}{18} =-3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+84}{2*9}=\frac{114}{18} =6+1/3 $
| g+30=91 | | 6(x-3)=8(x-8) | | 4x^2+4x+256=0 | | 2(4s+4)=16 | | 12n+3=63 | | 1/2x+17=27 | | y=4+5(14) | | 5(2a+9)=135 | | c−37=62 | | 77+13+x=180 | | y=4+5(4) | | 3(a-5)=57 | | 2*0,25=2x-3 | | 13x+7=6x+21 | | 80=8c | | 2x-134+x-58=180 | | 7(3w+2)/5=-8 | | 6(x-6)=2x-2 | | 15x–9=16 | | x/9+1=1 | | 7z+1=9 | | 3x-192=180 | | 66+x=24 | | g/2=13.5 | | 10(s-3=-54 | | n-54=891 | | 6r+3=-3(-2r-1) | | 3(3y−4)=3 | | 8x+10=2+4x | | 11.8=t+2.55 | | 6s-22=128 | | N-10=14-3n |